There is no doubt that mathematics and astronomy owe a great debt to the Arabs. As George Sarton, the great Harvard historian of science, wrote in his monumental Introduction to the History of Science:


From the second half of the eighth to the end of the eleventh century, Arabic was the scientific, the progressive language of mankind. When the West was sufficiently mature to feel the need of deeper knowledge, it turned its attention, first of all, not to the Greek sources, but to the Arabic ones.


In the twelfth century, Europe became aware of the scientific achievements of the Arabs and embarked upon serious translations of their rich legacy. A special college for translators was founded in Toledo, Spain, and it was there, and in other centers, that some of the great Christian scholars translated most of the Arabic works on mathematics and astronomy. In most European universitie5 Arab treatises formed the basis of mathematical studies.

The history of Arab mathematics began with Muhammad ibn Musa al-Khawarazmi who, in the

 
   
 
     
  ninth century, journeyed east to India to learn the sciences of that time. He introduced Hindu numerals, including the concept of zero into the Arab world. This number system was later transmitted to the West. Prior to the use of"Arab" numerals, as we know them today, the West relied upon the somewhat clumsy system of Roman numerals. Whereas in the decimal system, the number 1948 can be written in four figures, eleven figures were needed using the Roman system: MDCCCXLVIII. It is obvious that even for the solution of the simplest arithmetical problem, Roman numerals called for an enormous expenditure of time and labor. The Arab numerals, on the other hand, rendered even complicated mathematical tasks relatively simple.

The scientific advances of the West would have been impossible had scientists continued to depend upon the Roman numerals and been deprived of the simplicity and flexibility of the decimal system and its main glory, the zero. Though the Arab numerals were originally a Hindu invention, it was the Arabs who turned them into a workable system; the earliest Arab zero on record dates from the year 873, whereas the earliest Hindu zero is dated 876. For the subsequent four hundred years, Europe laughed at a method that depended upon the use of zero, "a meaningless nothing."
Had the Arabs given us nothing but the decimal system, their contribution to progress would have been considerable. In actual fact, they gave us infinitely more. While religion is often thought to be an impediment to scientific progress, we can see, in a study of Arab mathematics, how religious beliefs actually inspired scientific discovery.
Because of the Qur'an's very concrete prescriptions regarding the division of an estate among children of a deceased person, it was incumbent upon the Arabs to find the means for very precise delineation of lands. For example, let us say a father left an irregularly shaped piece of land-seventeen acres large-to his six sons, each OAA~ of whom had to receive precisely one-sixth of his legacy. The mathematics that the Arabs had inherited from the Greeks made such a division extremely complicated, if not impossible. It was the search for a more accurate, more comprehensive, and more flexible method that led Khawarazmi to the invention of algebra. According to Professor Sarton, Khawarazmi "influenced mathematical thought to a greater extent than any other medieval

 
   
 
     
       
     
     
   
     
   

Home Page == > Click on Arab Civilization :)